

Reg. No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)
B.E. END SEMESTER EXAMINATIONS, April / May 2024

DEPARTMENT OF MECHANICAL ENGINEERING
VII

ME 5751 FINITE ELEMENT ANALYSIS
(Regulation2019)

Max. Marks: 100

Time: 3 hrs

CO1	Developing mathematical models for Boundary Value Problems and their numerical solution.
CO2	Applying concepts of Finite Element Analysis to solve one dimensional problem.
CO3	Determining field variables for two dimensional scalar variable problems.
CO4	Determining field variables for two dimensional vector variable problems
CO5	Applying the need for Isoparametric transformation and the use of numerical integration.

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10x2=20Marks)
(Answer all Questions)

Q.No	Questions	Marks	CO	BL
1	Give the governing equation for 1D solid mechanics problem	2	1	L1
2	State the advantages of weak form	2	1	L1
3	Write and plot the shape functions for 1D quadratic element	2	2	L1
4	List the properties of stiffness matrix	2	2	L1
5	Why a CST element so called ?	2	3	L2
6	Write the governing equation for the torsion of non-circular sections and give the associated boundary conditions	2	3	L1
7	Give the strain displacement matrix for CST element	2	4	L1
8	Write the constitutive matrix for plane stress problem	2	4	L1
9	What is meant by iso parametric element	2	5	L2
10	Write down the expression for the jacobian for a 1 D linear element.	2	5	L1

PART- B(5x 13= 65 Marks)

Q.No	Questions	Marks	CO	BL
11 (a)	Using Ritz technique , determine the temperature distribution in the fin shown in Fig.11(a). $T_a = 20^\circ C$, $h = 0.2 \text{ W/cm}^2 \text{ }^\circ C$, $k = 4 \text{ W/cm }^\circ C$. Assume the free end is open to the atmosphere.	13	1	L4

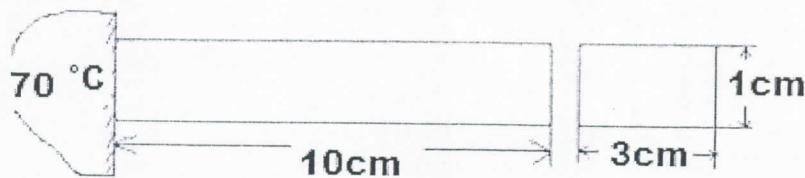


Fig.11(a)

OR

11 (b) Using collocation method, find the displacement of given governing equation

$$\frac{d}{dx} \left[x \frac{du}{dx} \right] - 2x^2 = 0, \quad 1 < x < 5$$

$$\text{at } x = 1, u = 3, \quad \text{at } x = 5, \quad x \frac{du}{dx} = -\frac{1}{6}$$

12 (a) Determine the first two natural frequencies of longitudinal vibration of the stepped steel bar shown in Fig.12 (a) and plot the mode shapes. Take $E = 200\text{GPa}$ and density 7800kg/m^3 . Cross sectional area of section A and B is 300 mm^2 and 150 mm^2 respectively.

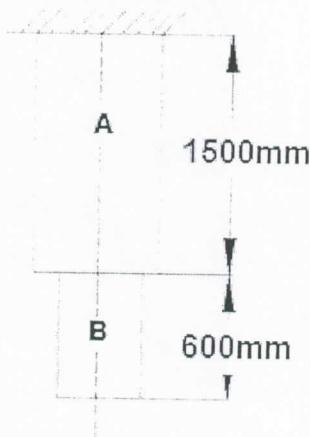
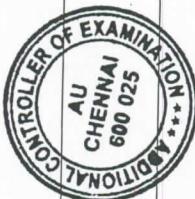
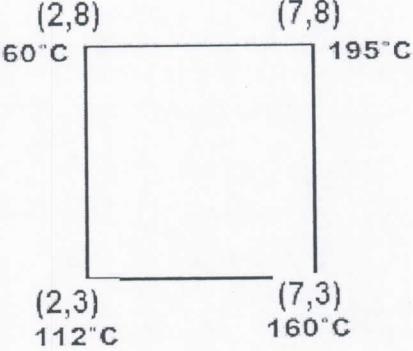
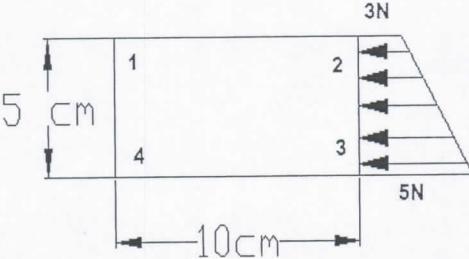
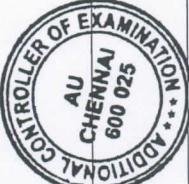






Fig.12(a)

OR

12 (b) A shaft of length 2000 mm and diameter 8 mm carries a pulley weighing 100 N at the center. If the shaft is mounted on both ends in ball bearings, determine the first two natural frequencies. $E = 200 \text{ GPa}$ and density 7800 kg/m^3 .

13 (a)	Determine the temperature at the location (5,6) in a square plate with the data shown in Fig.13 (a). Also draw the 125°C isotherm using at least three points.	13	3	L4
OR				
13 (b)	Determine the nodal load vector for the given element shown in Fig. 13(b).	13	3	L4
14 (a)	The nodal co-ordinates of a plane stress element are 1(2,6),2(12,9) and 3 (6,5). The nodal displacements are $u_1 = 0.002$ mm, $v_1 = 0.003$ mm, $u_2 = 0.0$ mm, $v_2 = 0.0$ mm and $u_3 = 0.004$ mm, $v_3 = 0.0$ mm. Find the element stresses. Assume $E = 70$ GPa and $\mu = 0.3$. Use unit thickness for plane stress. All the coordinates are in milli metres.	13	4	L4
OR				
14 (b)	The nodal co-ordinates for an axi-symmetric triangular element are given below. $r_1 = 35$ mm, $r_2=85$ mm, $r_3=85$ mm, $z_1=40$ mm, $z_2=40$ mm, $z_3= 80$ mm. Evaluate strain displacement matrix. Also determine the element strains. The nodal displacements are found out as $u_1= 0.002$ mm, $v_1 = 0.001$ mm, $u_2 = 0.004$ mm, $v_2 = - 0.003$ mm and $u_3 = -0.004$ mm, $v_3 = 0.006$ mm.	13	4	L4

15 (a) (i)	Using Gauss Quadrature, evaluate the following integral $I = \int_{-1}^{+1} \int_{-1}^{+1} \frac{(9 - 8\xi + 3\xi^2)}{(2 + 6\eta + 5\eta^2)} d\xi d\eta$	8	5	L4
(ii)	Evaluate the shape functions for one corner node and mid side node of a nine-noded quadratic quadrilateral isoparametric element.	5	5	L4
OR				
15 (b) (i)	For a four-noded element with coordinates (1, 1), (3, 0), (3.5, 2.5) and (2, 3), determine the Jacobian matrix at (1/6, 1/6).	8	5	L4
(ii)	Evaluate the shape functions for one corner node and mid side node of a iso-parametric linear strain triangular element	5	5	L4

PART- C(1x 15=15Marks)
(Q.No.16 is compulsory)

Q.No	Questions	Marks	CO	BL
16.	A member of rectangular cross section 6 cm x 2 cm as shown in Fig.16. is to be analysed for determining the stress distribution. Considering geometric and boundary condition symmetry, 1/4th of the cross section was modeled using equisized triangular elements. Carry out the assembly and solve for the unknown stress function values. $2G\Theta = 3450$	15	2	L5

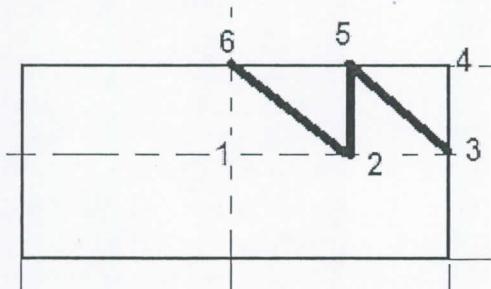


Fig.16

